Considere um planeta esférico e homogêneo de massa M e raio R. Dois satélites idênticos, de pequenas dimensões e massa m cada um, denotados por satélites 1 e 2, estão orbitando esse planeta descrevendo órbitas circulares de raios r1 e r2 > r1, respectivamente, como mostra a figura a seguir.
Considere qualquer referencial solidário ao planeta como um referencial inercial e despreze a interação gravitacional entre os satélites, assim como todas as outras forças, exceto as que o planeta exerce sobre cada satélite.
A esse respeito, assinale V para a afirmativa verdadeira e F para a falsa.
( ) A energia cinética do satélite 2 é maior do que a do satélite 1, pois r2 > r1.
( ) De acordo com a terceira lei de Kepler, os períodos das órbitas circulares dos dois satélites são iguais, pois ambos estão orbitando o mesmo planeta.
( ) A energia mecânica do sistema planeta-satélite 2 é maior que a do sistema planeta-satélite 1.
As afirmativas são, respectivamente,