Em um calorímetro à temperatura ambiente de 30 °C, de capacidade térmica 40 cal/°C, são misturados 20 gramas de gelo a −20 °C, 50 gramas de água a 25 °C e 10 gramas de vapor de água a 120 °C. Estabelecido o equilíbrio térmico, admitindo que não haja perda de calor para o ambiente, a temperatura final da mistura, em °C, é de aproximadamente Dados: Calor específico do gelo = 0,50 cal/g °C Calor específico da água = 1,0 cal/g °C Calor específico do vapor de água = 0,50 cal/g °C Calor latente de fusão do gelo = 80 cal/g Calor latente de vaporização da água = 540 cal/g
Uma substância pura apresenta as seguintes características:
− calor específico no estado líquido = 0,40 cal/g °C;
− temperatura de fusão = 10 °C;
− temperatura de ebulição = 70 °C;
− calor latente de vaporização = 80 cal/g.
Num frasco de capacidade térmica desprezível são colocados 10 g dessa substância à temperatura ambiente de 20 °C. Até que ocorra a vaporização completa dessa amostra da substância, uma fonte térmica deverá fornecer-lhe energia, em joules, de
Dois objetos feitos do mesmo material (mármore, por exemplo) possuem capacidades térmicas proporcionais a suas massas. Assim, é conveniente definir uma "capacidade térmica por unidade de massa", ou calor específico (c), que se refere não a um objeto, mas a uma massa unitária do material de que é feito o objeto. Já quando o calor é transferido para uma amostra sólida ou líquida, nem sempre a temperatura da amostra aumenta. Em vez disso, a amostra pode mudar de fase (ou de estado). No caso, a quantidade de energia por unidade de massa que deve ser transferida em forma de calor para que uma amostra mude totalmente de fase é chamada de calor de transformação e é representada pela letra L. Halliday e Resnick. Fundamentos de Física: gravitação, ondas e termodinâmica. v. 2. Rio de Janeiro: LTC, 2009 (com adaptações). A partir do texto acima, assinale a alternativa que apresenta a quantidade de calor que uma amostra de gelo de massa m = 100 g a -10 °C deve absorver para passar ao estado líquido a 20 °C, sendo o calor específico do gelo (cgelo) igual a 2.220 J/kg.K, o calor específico da água (cágua) igual a 4.190 J/kg.K e o calor de fusão do gelo (LF) igual a 333 kJ/kg.
No interior e na capital do Ceará, o chá de erva-cidreira (Melissa oficinalis) é amplamente utilizado por causa das seguintes ações: calmante, diurética e expectorante. Thayla quer fazer um chá para seu irmãozinho, Júnior, que está com muita secreção nos pulmões. Ela dispõe de 200g de gelo a 0 ºC e utilizará, para fazer este chá, um forno micro-ondas que tem uma potência máxima de 700 W. Para fazer os cálculos, considere as seguintes informações: • Thayla e Júnior moram em Fortaleza (nível do mar); • O calor latente de fusão do gelo é de 80 cal/g; • O calor específico da água é de 1 cal/g ºC; • 1 cal equivale, aproximadamente, a 4 joules. Considerando que Thayla vai usar este micro-ondas sempre na potência máxima, o tempo necessário para a água entrar em ebulição é, aproximadamente, de
Considere um cilindro no qual está contido um gás. O cilindro tem um êmbolo móvel, e a sua extremidade inferior está tampada. Este cilindro é mergulhado em água, que é aquecida por meio de um bico de Bunsen, conforme ilustrado na figura abaixo.
Os dados coletados durante um experimento estão expressos na tabela abaixo:
Segundo a lei de Charles, a relação entre o volume e a temperatura, à pressão constante, é linear: V = kT. De acordo com os dados da tabela, o valor dessa constante k, em ml/K, é aproximadamente:
Acerca das afirmações A1, A2 e A3 abaixo é CORRETO afirmar: A1- Considere que um cilindro de cobre de massa M, à temperatura de 80 ºC, é completamente mergulhado em água, a 20 ºC, contida num recipiente isolante de calor. Considere que a massa de água é igual à massa do cilindro de cobre. Sabendo que o calor específico da água é cerca de 10 vezes maior que o do cobre, a temperatura de equilíbrio da água será de 50 ºC. A2- A quantidade de calor necessária para elevar a temperatura de um gás ideal em 1 ºC é menor sob pressão constante do que sob volume constante. A3- A pressão de um gás ideal em um container de volume constante é proporcional à energia cinética média das moléculas do gás.
Um pequeno aquecedor elétrico de imersão de 200 watts de potência foi usado para aquecer 240g de água durante 4 minutos. A variação da temperatura dessa quantidade de água, neste intervalo de tempo foi de: (Dados: Calor específico da água igual a 1 cal/g°C, 1 cal = 4 J).
Um processo reversível para um sistema pode ser entendido como aquele que permite ser invertido totalmente, sem deixar vestígios em si ou no meio. Considere as afirmativas a seguir:
I - Quando existir expansão livre, o sistema será reversível.
II - A troca de calor com diferença finita de temperatura é um fator de irreversibilidade.
III - Sistemas onde ocorra histerese são irreversíveis.
A figura, a seguir, mostra uma panela usada para preparar o café da manhã.
Durante a preparação, meio litro de água à temperatura inicial de 20°C (293 K) é fervido à 100°C (373 K). Considerando o calor específico e a densidade da água iguais a 1 cal/g°C e 1 g/mL, respectivamente, a variação de entropia desse processo termodinâmico é, em cal/°C, de
No final do século XVIII, a natureza do calor estava em discussão. Dois pontos de vista congregavam a opinião dos físicos: de um lado, a hipótese do calórico de Lavoisier; do outro, a hipótese do movimento vibratório das partículas do corpo, endossada por Francis Bacon e Robert Hooke. Nesse cenário, as experiências bastante precisas realizadas por Benjamim Thomson (Conde de Rumford), enquanto supervisionava a perfuração de canhões nas oficinas do arsenal militar de Munich, levaram à conclusão de que